Question: Where Can a Practice Find Everything They Need to Manage Keratoconus?
Answer: You Can Get Off to a Flying Start Right Here!
- A Guide to the New Co-management of Keratoconus
- Books
- Diagnostics & Genetic Testing
- Professional Societies
- Symposia
- Professional Publications
- Peer-Reviewed Journals
- Labs for the Manufacturing of Contact Lenses In KC
- Coding & Billing for KC - Medically Necessary Contact Lenses
- Coding & Billing for KC - Corneal Collagen Crosslinking
Keratoconus (KC) broadly requires a thorough comprehension of the disorder and of its management. In simple sum-up, KC is a corneal disorder that progresses and necessitates prompt early diagnosis and treatment of progression when required and on-going monitoring as required too.
Detection of early Keratoconus remains challenging as there is no globally accepted definition for defining the diagnosis and progression of Keratoconus. There is currently no standard diagnostic or grading system for keratoconus which everyone agrees on. Additionally, there is no accepted definition of progression, and no ability to predict the prognosis and outcomes of treatment for individual patients.
The economic burden and vision-related quality of life are factors which can be run away to be disproportionately high in it's toll, which is a real concern including the incidence of the disease being historically reported significantly lower than we at length have known it to really be. Furthermore than that, there are much more increased incidences in certain populations which are very concerning in scope.
The aetiology of Keratoconus remains unknown, although it appears to be a complex, heterogeneous disorder with multiple causative factors that can be broadly classified as environmental, biomechanical, biochemical and genetic. The most likely mode of inheritance has been suggested as autosomal dominant although recessive genes may also exist. An association with environmental and biomechanical factors is often described, with mechanical trauma from eye-rubbing, stimulation through contact lens wear or kerato-refractive laser surgery reported as contributing factors in the progression of Keratoconus. The possible role of biochemical factors has also been implicated in the aetiology of this disease with elevated levels of matrix metalloproteinases and inflammatory cytokines found in Keratoconus. However, it is unclear if this is reflective of a cause or effect.
Contact lenses and surgical procedures can both be used to improve vision. The most crucial aspect of management is provider cooperation to achieve the best outcome. If you want to learn more, you should use other educational resources in addition to what information you have. Sadly, numerous resources will cover approaches which are contradictory or conflicting to each other. This may be due to 'bad science' or incomplete science or because there is one or more financial interests at play, and which is what is at the center of the matters becoming skewed and the reason for the information being corrupt. However Peer-Reviewed studies from respected Journals are the standard bearers to rely on for well developed critical observation, examination and scrutiny, which may take long term results to achieve.
‘The patient is the final judge’
Literature
For further insight on the key topics please take a moment to lookup (the resources listed above and) the following widely accepted literature publications.
Further Reading Index
Keratoconus Prevalence
Etiology, Pathophysiology, Genetics, and Associated Disease
Corneal Biomechanics and Its Relationship to Keratoconus
Optics of Keratoconus and Correcting Aberrations with Wavefront-Guided Lenses
Diagnostics and Monitoring
Pediatrics and Keratoconus
Corneal Crosslinking for Keratoconus and Corneal Ectasia
Surgical Management of Keratoconus
Specialty Contact Lenses for Keratoconus
Collaborative Care in Keratoconus
Clinical Pearls for Communicating with Keratoconic Patients
Keratoconus Prevalence
1 Randleman JB, Khandelwal SS, Hafezi F. Corneal cross-linking. Surv Ophthalmol. 2015;60(6):509-523.
2 Kennedy RH, Bourne WM, Dyer JA. A 48-Year Clinical and Epidemiologic Study of Keratoconus. American Journal of Ophthalmology. 1986;101(3):267-273.
3 Ihalainen A. Clinical and epidemiological features of keratoconus genetic and external factors in the pathogenesis of the disease. Acta Ophthalmol Suppl (1985). 1986;178:1-64.
4 Gorskova EN, Sevost’ianov EN. Epidemiology of keratoconus in the Urals. Vestn Oftalmol. 1998;114(4):38-40.
5 Gomes JAP, Rodrigues PF, Lamazales LL. Keratoconus epidemiology: A review. Saudi J Ophthalmol. 2022;36(1):3-6.
6 Georgiou T, Funnell CL, Cassels-Brown A, O’Conor R. In©uence of ethnic origin on the incidence of keratoconus and associated atopic disease in Asians and white patients. Eye (Lond). 2004;18(4):379-383.
7 Nielsen K, Hjortdal J, Pihlmann M, Corydon TJ. Update on the keratoconus genetics. Acta Ophthalmol. 2013;91(2):106-113.
8 Pizzarello LD. Refractive changes in pregnancy. Graefes Arch Clin Exp Ophthalmol. 2003;241(6):484-488.
9 Tanabe U, Fujiki K, Ogawa A, Ueda S, Kanai A. Prevalence of keratoconus patients in Japan. Nippon Ganka Gakkai Zasshi. 1985;89(3):407-411.
10 Chan E, Chong EW, Lingham G, et al. Prevalence of Keratoconus Based on Scheimp- ©ug Imaging: The Raine Study. Ophthalmology. 2021;128(4):515-521.
11 Jonas JB, Nangia V, Matin A, Kulkarni M, Bhojwani K. Prevalence and associations of
keratoconus in rural maharashtra in central India: the central India eye and medical study. Am J Ophthalmol. 2009;148(5):760-765.
12 Xu L, Wang YX, Guo Y, You QS, Jonas JB, Beijing Eye Study G. Prevalence and asso ciations of steep cornea/keratoconus in Greater Beijing. The Beijing Eye Study. PLoS One. 2012;7(7):e39313.
13 Assiri AA, Yousuf BI, Quantock AJ, Murphy PJ. Incidence and severity of keratoconus in Asir province, Saudi Arabia. Br J Ophthalmol. 2005;89(11):1403-1406.
14 Hashemi H, Khabazkhoob M, Fotouhi A. Topographic Keratoconus is not Rare in an Iranian population: the Tehran Eye Study. Ophthalmic Epidemiol. 2013;20(6):385-391.
15 Hashemi H, Khabazkhoob M, Yazdani N, et al. The prevalence of keratoconus in a young population in Mashhad, Iran. Ophthalmic Physiol Opt. 2014;34(5):519-527.
16 Millodot M, Shneor E, Albou S, Atlani E, Gordon-Shaag A. Prevalence and associated factors of keratoconus in Jerusalem: a cross-sectional study. Ophthalmic Epidemiol. 2011;18(2):91-97.
17 Ziaei H, Jafarinasab MR, Javadi MA, et al. Epidemiology of keratoconus in an Iranian population. Cornea. 2012;31(9):1044-1047.
18 Torres Netto EA, Al-Otaibi WM, Hafezi NL, et al. Prevalence of keratoconus in paedi atric patients in Riyadh, Saudi Arabia. Br J Ophthalmol. 2018;102(10):1436-1441.
19 Lucas SEM, Burdon KP. Genetic and Environmental Risk Factors for Keratoconus. Annu Rev Vis Sci. 2020;6:25-46.
20 Weed KH, MacEwen CJ, Giles T, Low J, McGhee CN. The Dundee University Scottish Keratoconus study: demographics, corneal signs, associated diseases, and eye rubbing. Eye (Lond). 2008;22(4):534-541
21 Gordon-Shaag A, Millodot M, Shneor E, Liu Y. The genetic and environmental factors for keratoconus. Biomed Res Int. 2015;2015:795738.
22 Hafezi F, Hafezi NL, Pajic B, et al. Assessment of the mechanical forces applied during eye rubbing. BMC Ophthalmol. 2020;20(1):301.
23 Mazharian A, Panthier C, Courtin R, et al. Incorrect sleeping position and eye rubbing in patients with unilateral or highly asymmetric keratoconus: a case-control study. Graefes Arch Clin Exp Ophthalmol. 2020;258(11):2431-2439.
24 Zadnik K, Barr JT, Edrington TB, et al. Baseline «ndings in the Collaborative
Longitudinal Evaluation of Keratoconus (CLEK) Study. Invest Ophthalmol Vis Sci. 1998;39(13):2537-2546.
25 Nowak DM, Gajecka M. The genetics of keratoconus. Middle East Afr J Ophthalmol. 2011;18(1):2-6.
26 Gupta PD, Johar K, Sr., Nagpal K, Vasavada AR. Sex hormone receptors in the human
eye. Surv Ophthalmol. 2005;50(3):274-284.
27 Spoerl E, Zubaty V, Raiskup-Wolf F, Pillunat LE. Oestrogen-induced changes in
biomechanics in the cornea as a possible reason for keratectasia. Br J Ophthalmol. 2007;91(11):1547-1550.
28 Pobelle-Frasson C, Velou S, Huslin V, Massicault B, Colin J. Keratoconus: what
happens with older patients?. J Fr Ophtalmol. 2004;27(7):779-782.
29 Torres-Netto EA, Randleman JB, Hafezi NL, Hafezi F. Late-onset progression of kera toconus after therapy with selective tissue estrogenic activity regulator. J Cataract Refract Surg. 2019;45(1):101-104.
30 Lee R, Hafezi F, Randleman JB. Bilateral Keratoconus Induced by Secondary Hypo thyroidism After Radioactive Iodine Therapy. J Refract Surg. 2018;34(5):351-353.
31 Tuft SJ, Hassan H, George S, Frazer DG, Willoughby CE, Liskova P. Keratoconus in 18 pairs of twins. Acta Ophthalmol. 2012;90(6):e482-486.
32 Wang Y, Rabinowitz YS, Rotter JI, Yang H. Genetic epidemiological study of kerato conus: Evidence for major gene determination. American Journal of Medical Genetics. 2000;93(5):403-409.
33 McComish BJ, Sahebjada S, Bykhovskaya Y, et al. Association of Genetic Variation With Keratoconus. JAMA Ophthalmol. 2020;138(2):174-181.
34 Lapeyre G, Fournie P, Vernet R, et al. Keratoconus Prevalence in Families: A French
Study. Cornea. 2020;39(12):1473-1479.
35 Abu-Amero KK, Al-Muammar AM, Kondkar AA. Genetics of keratoconus: where do we stand? J Ophthalmol. 2014;2014:641708.
36 Burdon KP, Vincent AL. Insights into keratoconus from a genetic perspective. Clin Exp Optom. 2013;96(2):146-154.
37 Sza¥ik JP, Sza¥ik J, Blasiak J, Wojcik KA. Role of biochemical factors in the pathogen esis of keratoconus. Acta Biochimica Polonica. 2014;61(1
Etiology, Pathophysiology, Genetics,
and Associated Disease
1 Mathan JJ, Gokul A, Simkin SK, Meyer
JJ, Patel DV, McGhee CNJ. Topographic screening reveals keratoconus to be extremely
common in Down syndrome. Clin Experiment Ophthalmol. 2020;48(9):1160-1167.
doi:10.1111/ceo.13852
2 Rabinowitz YS. Keratoconus. Surv Ophthalmol.
1998;42(4):297-319. doi:10.1016/s0039-6257(97)00119-7
3 Loukovitis E, Sfakianakis K,
Syrmakesi P, et al. Genetic Aspects of Keratoco[1]nus: A Literature
Review Exploring Potential Genetic Contributions and Possi[1]ble
Genetic Relationships with Comorbidities. Ophthalmol Ther. 2018;7(2):263-292.
doi:10.1007/s40123-018-0144-8
4. Rabinowitz YS. The genetics of keratoconus.
Ophthalmol Clin N Am. 2003;16(4):607-620, vii.
doi:10.1016/s0896-1549(03)00099-3
5 Zadnik K, Barr JT, Edrington TB, et
al. Baseline findings in the Collaborative Longitudinal Evaluation of
Keratoconus (CLEK) Study. Invest Ophthalmol Vis Sci. 1998;39(13):2537-2546.
6 Wang Y, Rabinowitz YS, Rotter JI,
Yang H. Genetic epidemiological study
of keratoconus: evidence for major
gene determination. Am J Med Genet. 2000;93(5):403-409.
7 Romero-Jiménez M,
Santodomingo-Rubido J, Wolffsohn JS. Keratoconus: a
review. Contact Lens Anterior Eye J Br
Contact Lens Assoc. 2010;33(4):157-166;
quiz 205.
doi:10.1016/j.clae.2010.04.006
8 Burdon KP, Vincent AL. Insights into
keratoconus from a genetic perspective.
Clin Exp Optom. 2013;96(2):146-154.
doi:10.1111/cxo.12024
9 Tyynismaa H, Sistonen P, Tuupanen S,
et al. A locus for autosomal dominant
keratoconus: linkage to 16q22.3-q23.1
in Finnish families. Invest Ophthalmol Vis Sci. 2002;43(10):3160-3164.
10 Pathak D, Nayak B, Singh M, et al.
Mitochondrial complex 1 gene analysis in
keratoconus. Mol Vis.
2011;17:1514-1525.
11 Cankaya C, Gunduz A, Cumurcu T,
Demirel S, Savaci SS, Cavdar M. Familial
association of keratoconus and
granular corneal dystrophy: The familial case
series. North Clin Istanb.
2019;6(2):176-183. doi:10.14744/nci.2018.08860
12 Bechara SJ, Waring GO, Insler MS.
Keratoconus in two pairs of identical twins. Cornea. 1996;15(1):90-93.
13 Hao X dan, Chen X nian, Zhang Y
yang, et al. Multi-level consistent changes
of the ECM pathway identified in a
typical keratoconus twin’s family by
multi-omics analysis. Orphanet J Rare
Dis. 2020;15(1):227. doi:10.1186/s13023-020-01512-7
14 Gordon-Shaag A, Millodot M, Essa M,
Garth J, Ghara M, Shneor E. Is consan[1]guinity
a risk factor for keratoconus? Optom Vis Sci O Publ Am Acad Optom.
2013;90(5):448-454.
doi:10.1097/OPX.0b013e31828da95c
15 Shapiro MB, France TD. The ocular
features of Down’s syndrome. Am J Oph[1]thalmol.
1985;99(6):659-663. doi:10.1016/s0002-9394(14)76031-3
16 Hardcastle AJ, Liskova P,
Bykhovskaya Y, et al. A multi-ethnic genome-wide association study implicates
collagen matrix integrity and cell differentiation pathways in keratoconus.
Commun Biol. 2021;4(1):266. doi:10.1038/s42003-021-01784-0
17 Jafri, B., Lichter, H., &
Stulting, R. D. (2004). Asymmetric keratoconus
attributed to eye rubbing. Cornea,
23(6), 560–564. https://doi.org/10.1097/01.
ico.0000121711.58571.8d
18 Goldich Y, Barkana Y, Gerber Y, et
al. Effect of diabetes mellitus on biomechan[1]ical parameters
of the cornea. J Cataract Refract Surg. 2009;35(4):715-719. doi:10.1016/j.jcrs.2008.12.013
19 Kuo IC, Broman A, Pirouzmanesh A,
Melia M. Is there an association between diabetes and keratoconus?
Ophthalmology. 2006;113(2):184-190. doi:10.1016/j.ophtha.2005.10.009
20 Seiler T, Huhle S, Spoerl E, Kunath
H. Manifest diabetes and keratoconus: a retrospective case-control study.
Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol.
2000;238(10):822-825. doi:10.1007/s004179900111
21 Woodward MA, Blachley TS, Stein JD.
The Association Between Sociodemo[1]graphic
Factors, Common Systemic Diseases, and Keratoconus: An Analysis of a Nationwide
Heath Care Claims Database. Ophthalmology. 2016;123(3):457 465.e2.
doi:10.1016/j.ophtha.2015.10.035
22 Merdler I, Hassidim A, Sorkin N, et
al. Keratoconus and allergic diseases among Israeli adolescents between 2005
and 2013. Cornea. 2015;34:525–9.
23 Thyssen, J. P., Toft, P. B.,
Halling-Overgaard, A. S., Gislason, G. H., Skov, L., & Egeberg, A. (2017).
Incidence, prevalence, and risk of selected ocular disease in adults with
atopic dermatitis. Journal of the American Academy of Derma[1]tology,
77(2), 280–286.e1. https://doi.org/10.1016/j.jaad.2017.03.003
24 Harrison RJ, Klouda PT, Easty DL,
Manku M, Charles J, Stewart CM. Associa[1]tion
between keratoconus and atopy. Br J Ophthalmol. 1989;73(10):816-822. doi:10.1136/bjo.73.10.816
25 Bawazeer AM, Hodge WG, Lorimer B.
Atopy and keratoconus: a multivariate analysis. Br J Ophthalmol.
2000;84(8):834-836. doi:10.1136/bjo.84.8.834
26 Bak-Nielsen S, Ramlau-Hansen CH,
Ivarsen A, Plana-Ripoll O, Hjortdal J. A nationwide population-based study of
social demographic factors, associated diseases and mortality of keratoconus
patients in Denmark from 1977 to 2015. Acta ophthalmologica. 2019B;97(5):497-504.
doi: 10.1111/aos.13961. PubMed PMID: 30426693.
27 Farjadnia M, Naderan M,
Mohammadpour M. Gene therapy in keratoconus. Oman J Ophthalmol. 2015;8(1):3-8.
doi:10.4103/0974-620X.149854
28 Karolak JA, Gajecka M. Genomic
strategies to understand causes of kerato[1]conus. Mol Genet
Genomics. 2017;292(2):251-269. doi:10.1007/s00438-016-1283-z
29 Moussa S, Grabner G, Ruckhofer J,
Dietrich M, Reitsamer H. Genetics in Keratoconus – What is New? Open Ophthalmol
J. 2017;11(1):201-210. doi:10.2174/1874364101711010201
30 Bykhovskaya Y, Margines B,
Rabinowitz YS. Genetics in Keratoconus: where are we? Eye Vis. 2016;3(1):16.
doi:10.1186/s40662-016-0047-5
31 Abu-Amero KK, Al-Muammar AM,
Kondkar AA. Genetics of Keratoconus: Where Do We Stand? J Ophthalmol.
2014;2014:1-11. doi:10.1155/2014/641708
32 Burdon KP, Macgregor S, Bykhovskaya
Y, et al. Association of Polymorphisms in the Hepatocyte Growth Factor Gene
Promoter with Keratoconus. Investig Opthalmology Vis Sci. 2011;52(11):8514.
doi:10.1167/iovs.11-8261
33 Fram, Nicole R., Say Anything: What
Is the Role of Genetic Testing for Kerato[1]conus and Corneal
Dystrophies in Your Practice? CRST 20
Corneal Biomechanics and Its
Relationship to Keratoconus
1 Abahussin, M., Hayes, S.,
Cartwright, N. E. K., Kamma-Lorger, C. S., Khan, Y.,
Marshall, J., & Meek, K. M. (2009).
3D collagen orientation study of the human
cornea using X-ray diffraction and
femtosecond laser technology. Investigative
Ophthalmology & Visual Science,
50(11), 5159–5164.
2 Meek, K. M., Tuft, S. J., Huang, Y.,
Gill, P. S., Hayes, S., Newton, R. H., & Bron,
A. J. (2005). Changes in collagen
orientation and distribution in keratoconus
corneas. Investigative Ophthalmology
& Visual Science, 46(6), 1948–1956.
3 Sherwin, T., & Brookes, N. H.
(2004). Morphological changes in keratoconus:
Pathology or pathogenesis. Clinical
& Experimental Ophthalmology, 32(2),
211–217.
4 Seiler, T. G., Shao, P., Eltony, A.,
Seiler, T., & Yun, S.-H. (2019). Brillouin
spectroscopy of normal and keratoconus
corneas. American Journal of
Ophthalmology, 202, 118–125.
5 Torres-Netto, E. A., Hafezi, F.,
Spiru, B., Gilardoni, F., Hafezi, N., Gomes, J. A.
P., Randleman, J. B., Sekundo, W.,
& Kling, S. (2020). Contribution of Bowman
layer to corneal biomechanics. Journal
of Cataract & Refractive Surgery.
6 Kling, S., Torres-Netto, E. A.,
Spiru, B., Sekundo, W., & Hafezi, F. (2020).
Quasi-Static Optical Coherence
Elastography to Characterize Human Corneal
Biomechanical Properties.
Investigative Ophthalmology & Visual Science, 61(6), 29–29.
7 Gatinel, D. (2016). Eye rubbing, a
sine qua non for keratoconus. Int J Kerat Ect Cor Dis, 5(1), 6–12.
8 Kenney, M. C., & Brown, D. J.
(2003). The cascade hypothesis of keratoconus. Contact Lens and Anterior Eye,
26(3), 139–146.
9 Torres-Netto, E. A., Abdshahzadeh,
H., Abrishamchi, R., Hafezi, N. L., Hillen,
M., Ambrósio Jr, R., Randleman, J. B.,
Spoerl, E., Gatinel, D., & Hafezi, F. (2022).
The Impact of Repetitive and Prolonged
Eye Rubbing on Corneal Biomechanics.
Journal of Refractive Surgery, 38(9),
610–616.
10 Li, D.-Q., & Pflugfelder, S. C.
(2005). Matrix metalloproteinases in corneal
inflammation. The Ocular Surface,
3(4), S-198.
11 Nishtala, K., Pahuja, N., Shetty,
R., Nuijts, R. M., & Ghosh, A. (2016).
Tear biomarkers for keratoconus. Eye
and Vision, 3(1), 1–7.
12 Shao, P., Eltony, A. M., Seiler, T.
G., Tavakol, B., Pineda, R., Koller, T., Seiler, T.,
& Yun, S.-H. (2019).
Spatially-resolved Brillouin spectroscopy reveals
biomechanical abnormalities in mild to
advanced keratoconus in vivo. Scientific Reports, 9(1), 1–12.
13 Lopes, B. T., Padmanabhan, P.,
Eliasy, A., Zhang, H., Abass, A., & Elsheikh, A. (2022). In vivo Assessment
of Localised Corneal Biomechanical Deterioration With Keratoconus Progression.
Frontiers in Bioengineering and Biotechnology, 10.
14 Scarcelli, G., Besner, S., Pineda,
R., & Yun, S. H. (2014). Biomechanical characterization of keratoconus
corneas ex vivo with Brillouin microscopy. Investigative Ophthalmology &
Visual Science, 55(7), 4490–4495.
15 De Stefano, V. S., Ford, M. R.,
Seven, I., & Dupps, W. J. (2020). Depth-depen[1]dent corneal
biomechanical properties in normal and keratoconic subjects by
optical coherence elastography.
Translational Vision Science & Technology, 9(7), 4–4.
16 Andreassen, T. T., Simonsen, A. H.,
& Oxlund, H. (1980). Biomechanical prop[1]erties of
keratoconus and normal corneas. Experimental Eye Research, 31(4), 435–441.
17 Nash, I. S., Greene, P. R., &
Foster, C. S. (1982). Comparison of mechanical
properties of keratoconus and normal
corneas. Experimental Eye Research,
35(5), 413–424.
18 Fontes, B. M., Ambrósio Jr, R.,
Velarde, G. C., & Nosé, W. (2011). Ocular
response analyzer measurements in
keratoconus with normal central corneal
thickness compared with matched normal
control eyes. Journal of Refractive
Surgery, 27(3), 209–215.
19 Hafezi, F., Frigelli, Matteo,
Torres-Netto, Emilio A., & Kling, Sabine. (2022).
OCT Elastography In Normal And
Keratoconus Subjects. Annual Meeting of the
European Society of Cataract and
Refractive Surgery, Milano.
20 Blackburn, B. J., Gu, S., Ford, M.
R., de Stefano, V., Jenkins, M. W., Dupps, W. J.,
& Rollins, A. M. (2019).
Noninvasive assessment of corneal crosslinking with
phase-decorrelation optical coherence
tomography. Investigative Ophthalmology
& Visual Science, 60(1), 41–51.
21 Blackburn, B., Murray, J., Ford, M.
R., Jenkins, M. W., Dupps, W. J., & Rollins, A.
M. (2020). Detection of weakening in
an enzymatic ex vivo model of corneal
ectasia with phase-decorrelation OCT.
Optical Coherence Tomography, OW1E-4
Optics of Keratoconus and Correcting
Aberrations with Wavefront-Guided Lenses
1 Mannis M, Ling J, Kyrillos R, et al.
Keratoconus and personality—a review:
Cornea 2018; 37: 400–4.
2 Applegate R, Donnelly III W, Marsack
J, et al. Three-dimensional relationship
between high-order root-mean-square
wavefront error, pupil diameter, and
aging. J Opt Soc Am A. 2007; 24:
578–87.
3 Salmon TO, van de Pol C. Normal-eye
Zernike coefficients and root-mean[1]square
wavefront
errors. J Cataract Refract Surg. 2006;
32: 2064-74.
4 Pantanelli S, MacRae S, Jeong TM, et
al. Characterizing the wave aberration
in eyes with keratoconus or
penetrating keratoplasty using a high-dynamic
range wavefront sensor. Ophthalmol.
2007; 114:2013-21.
5 Hastings GD, Applegate RA, Nguyen
LC, et al. Comparison of wavefront-guided
and best conventional scleral lenses
after habituation in eyes with corneal
ectasia. Optom Vis Sci. 2019; 96:
238–47.
6 Chen M, Yoon G. Posterior corneal
aberrations and their compensation effects
on anterior corneal aberrations in
keratoconic eyes. Invest Ophthalmol Vis Sci.
2008; 49: 5645-52.
7 Sabesan R, Johns L, Tomashevskaya O,
et al. Wavefront-guided scleral lens
prosthetic device for keratoconus.
Optom Vis Sci 2013; 90: 314–23.
8 Marsack JD, Ravikumar A, Nguyen C,
Ticak A, Koenig DE, Elswick JD, Applegate
RA. Wavefront-guided scleral lens
correction in keratoconus. Optom Vis Sci.
2014 Oct;91(10):1221-30. doi:
10.1097/OPX.0000000000000275. PMID:
24830371; PMCID: PMC4232493.
9 Gelles JD, Cheung B, Akilov S, et
al.. Ocular Impression-Based Scleral Lens
With Wavefront-Guided Optics for
Visual Improvement in Keratoconus. Eye
Contact Lens. 2022 Jul 29.
10
https://patents.google.com/patent/US6086204A/en?inventor=Peter+C.+Mag[1]nante
Diagnostics and Monitoring
1 Shah H, Pagano L, Vakharia A, Coco
G, Gadhvi KA, Kaye SB, Romano V. Impact
of COVID-19 on keratoconus patients
waiting for corneal cross linking. Eur J
Ophthalmol. 2021 Nov;31(6):3490-3493.
doi: 10.1177/11206721211001315. Epub
2021 Mar 15. PMID: 33719638.
2 Wilson SE, Lin DT, Klyce SD. Corneal
topography of keratoconus. Cornea 1991;10:2-8.
3 Wilson SE, Ambrosio R. Computerized
corneal topography and its importance to wavefront technology. Cornea
2001;20:441-54.
4 Rabinowitz YS, McDonnell PJ.
Computer-assisted corneal topography in
keratoconus. Refractive & corneal
surgery 1989;5:400-8.
5 Maeda N, Klyce SD, Smolek MK,
Thompson HW. Automated keratoconus
screening with corneal topography
analysis. Investigative ophthalmology & visual science 1994;35:2749-57.
6 Maguire LJ, Bourne WM. Corneal
topography of early keratoconus. American journal of ophthalmology
1989;108:107-12.
7 Maeda N, Klyce SD, Smolek MK.
Comparison of methods for detecting keratoconus using videokeratography.
Archives of ophthalmology 1995;113:870-4.
8 Wilson SE, Klyce SD. Advances in the
analysis of corneal topography. Surv
Ophthalmol 1991;35:269-77.
9 Klyce SD. Chasing the suspect:
keratoconus. Br J Ophthalmol 2009;93:845-7.
10 Ambrosio R, Jr., Alonso RS, Luz A,
Coca Velarde LG. Corneal-thickness spatial
pro«le and corneal-volume distribution:
tomographic indices to detect keratoconus.
Journal of cataract and refractive
surgery 2006;32:1851-9.
11 Reinstein DZ, Silverman RH, Rondeau
MJ, Coleman DJ. Epithelial and corneal
thickness measurements by
high-frequency ultrasound digital signal processing.
Ophthalmology 1994;101:140-6.
12 Salomao MQ, Ho¥ing-Lima AL, Lopes
BT, et al. Role of the corneal epithe[1]lium
measurements in keratorefractive surgery. Curr Opin Ophthalmol
2017;28:326-36.
13 Reinstein DZ, Gobbe M, Archer TJ,
Silverman RH, Coleman DJ. Epithelial,
stromal, and total corneal thickness
in keratoconus: three-dimensional display
with artemis very-high frequency
digital ultrasound. Journal of refractive
surgery (Thorofare, NJ : 1995)
2010;26:259-71.
14 Reinstein DZ, Archer TJ, Urs R,
Gobbe M, RoyChoudhury A, Silverman RH.
Detection of Keratoconus in Clinically
and Algorithmically Topographically
Normal Fellow Eyes Using Epithelial
Thickness Analysis. Journal of refractive
surgery (Thorofare, NJ : 1995)
2015;31:736-44.
15 Li Y, Chamberlain W, Tan O, Brass
R, Weiss JL, Huang D. Subclinical kerato[1]conus detection
by pattern analysis of corneal and epithelial thickness maps
with optical coherence tomography.
Journal of cataract and refractive surgery
2016;42:284-95.
16 Li Y, Tan O, Brass R, Weiss JL,
Huang D. Corneal epithelial thickness mapping
by Fourier-domain optical coherence
tomography in normal and keratoconic
eyes. Ophthalmology 2012;119:2425-33.
17 Chandapura R, Salomao MQ, Ambrosio
R, Jr., Swarup R, Shetty R, Sinha Roy A.
Bowman’s topography for improved
detection of early ectasia. J Biophotonics
2019;12:e201900126.
18 Colak HN, Kantarci FA, Yildirim A,
et al. Comparison of corneal topographic
measurements and high order
aberrations in keratoconus and normal eyes.
Contact Lens and Anterior Eye
2016;39:380-4.
19 Jafri B, Li X, Yang H, Rabinowitz
YS. Higher order wavefront aberrations and
topography in early and suspected
keratoconus. J Refract Surg 2007;23:774-81.
20 Gobbe M, Guillon M. Corneal
wavefront aberration measurements to detect
keratoconus patients. Cont Lens
Anterior Eye 2005;28:57-66.
21 Alio JL, Shabayek MH. Corneal
higher order aberrations: a method to grade
keratoconus. J Refract Surg
2006;22:539-45.
22 Maeda N, Fujikado T, Kuroda T, et
al. Wavefront aberrations measured
with Hartmann-Shack sensor in patients
with keratoconus. Ophthalmology
2002;109:1996-2003.
23 Ambrosio R, Jr., Caldas DL, Silva
RS, Pimentel LN, Valbon BF. Impacto da
análise do “wavefront” na
refractometria de pacientes com ceratocone.
Rev Bras Oftalmol 2010;29:294-300.
24 Luz A, Faria-Correia F, Salomão MQ,
Lopes BT, Ambrósio Jr R. Corneal biome[1]chanics:
Where are we? Journal of current ophthalmology 2016;28:97.
25 Luce DA. Determining in vivo
biomechanical properties of the cornea with
an ocular response analyzer. Journal
of cataract and refractive surgery
2005;31:156-62.
26 Pinero DP, Alcon N. In vivo
characterization of corneal biomechanics. Journal
of cataract and refractive surgery
2014;40:870-87.
27 Roberts CJ. Concepts and
misconceptions in corneal biomechanics. Journal of
cataract and refractive surgery
2014;40:862-9.
28 Shah S, Laiquzzaman M, Bhojwani R,
Mantry S, Cunliffe I. Assessment of the
biomechanical properties of the cornea
with the ocular response analyzer in
normal and keratoconic eyes. Invest
Ophthalmol Vis Sci 2007;48:3026-31.
29 Fontes BM, Ambrosio Junior R,
Jardim D, Velarde GC, Nose W. Ability of
corneal biomechanical metrics and
anterior segment data in the di´erentiation
of keratoconus and healthy corneas.
Arquivos brasileiros de oftalmologia
2010;73:333-7.
30 Fontes BM, Ambrosio R, Jr., Jardim
D, Velarde GC, Nose W. Corneal biome[1]chanical
metrics and anterior segment parameters in mild keratoconus.
Ophthalmology 2010;117:673-9.
31 Ambrósio Jr R, Ramos I, Luz A, et
al. Dynamic ultra high speed Scheimpflug
imaging for assessing corneal
biomechanical properties. Revista Brasileira de
Oftalmologia 2013;72:99-102.
32 Salomao MQ, Hofling-Lima AL,
Faria-Correia F, et al. Dynamic corneal
deformation response and integrated
corneal tomography. Indian journal of
ophthalmology 2018;66:373-82.
33 Roberts CJ, Vinciguerra R,
Vinciguerra P, et al. Biomechanical Assessment
with the Corvis ST Integration with
Tomography. Oculus Special Supplement
2016:2.
34 Francis M, Pahuja N, Shroff R, et
al. Waveform analysis of deformation
amplitude and deflection amplitude in
normal, suspect, and keratoconic eyes.
Journal of cataract and refractive
surgery 2017;43:1271-80.
35 Kuebler AG, Wiecha C, Reznicek L,
et al. Comparison of different devices to
measure the intraocular pressure in
thyroid-associated orbitopathy. Graefe’s
archive for clinical and experimental ophthalmology.
Albrecht von Graefes
Archiv fur klinische und
experimentelle Ophthalmologie 2019.
36 Pillunat KR, Herber R, Spoerl E,
Erb C, Pillunat LE. A new biomechanical
glaucoma factor to discriminate normal
eyes from normal pressure glaucoma
eyes. Acta ophthalmologica 2019.
37 Lee H, Roberts CJ, Ambrosio R, Jr.,
Elsheikh A, Kang DSY, Kim TI. Effect of
accelerated corneal crosslinking
combined with transepithelial photorefractive
keratectomy on dynamic corneal
response parameters and biomechanically
corrected intraocular pressure
measured with a dynamic Scheimpflug ana[1]lyzer
in healthy myopic patients. Journal of cataract and refractive surgery
2017;43:937-45.
38 Salomão MQ, Faria-Correa F, Ramos
I, Luz A, Ambrósio R. J. Corneal deformation
response with dynamic ultra-high-speed
scheimpflug imaging for detecting
ectatic corneas. Int J Keratoconus
Ectatic Corneal Dis 2016;5:1-5.
39 Salomão M, Ho²ing-Lima AL, Lopes B,
et al. Recent developments in keratoconus
diagnosis. Expert Review of
Ophthalmology 2018;13:329-41.
40 Wheeler J, Hauser MA, Afshari NA,
Allingham RR, Liu Y. The Genetics of
Keratoconus: A Review. Reprod Syst Sex
Disord 2012.
41 Bykhovskaya Y, Rabinowitz YS.
Update on the genetics of keratoconus. Exp
Eye Res 2021;202:108398. https://doi.org/10.1016/j.exer.2020.108398.
42 Bisceglia L, De Bonis P, Pizzicoli
C, Fischetti L, Laborante A, Di Perna M, et al.
Linkage analysis in keratoconus:
Replication of locus 5q21.2 and identification
of other suggestive loci. Investig
Ophthalmol Vis Sci 2009;50:1081–6. https://
doi. org/10.1167/iovs.08-2382.
43 Bykhovskaya Y, Li X, Taylor KD,
Haritunians T, Rotter JI, Rabinowitz YS.
Linkage analysis of high-density SNPs
confirms keratoconus locus at 5q
chromosomal region. Ophthalmic Genet
2016;37:109–10. https://doi.org/10.310
9/13816810.2014.889172.
44 Aknin C, Allart J, Rouland J.
Unilateral keratoconus and mirror image in a pair
of monozygotic twins. Journal francais
d’ophtalmologie 2007;30:899.
45 Stabuc-Silih M, Strazisar M,
Ravnik-Glavac M, Hawlina M, Glavac D. Genetics
and clinical characteristics of
keratoconus. Acta Dermatovenerol Alp Pannonica
Adriat 2010;19:3-10.
46 Nowak DM, Gajecka M. The genetics
of keratoconus. Middle East Afr J
Ophthalmol 2011;18:2-6.
47 Khaled ML, Helwa I, Drewry M,
Seremwe M, Estes A, Liu Y. Molecular and
Histopathological Changes Associated
with Keratoconus. BioMed research
international. 2017/03/03
ed2017:7803029.
34 | Jobson Medical Information: The
Keratoconus Education Initiative 2023
48 Shetty R, Ghosh A, Lim RR, et al.
Elevated expression of matrix metallopro[1]teinase-9 and
inflammatory cytokines in keratoconus patients is inhibited by
cyclosporine. Invest Ophthalmol Vis
Sci 2015;56:738-50.
49 Hashemi H, Asgari S, Panahi P,
Mehravaran S, Fotouhi A, Ambrósio R. Corneal
ectasia in mothers of Down syndrome
children. Scientific Reports 2021;11:1-5.
50 Akoto T, Li JJ, Estes AJ,
Karamichos D, Liu Y. The Underlying Relationship
between Keratoconus and Down Syndrome.
International Journal of Molecular
Sciences 2022;23:10796.
51 Regueiro U, López-López M,
Varela-Fernández R, Sobrino T, Diez-Feijoo E, Lema I. Immunomodulatory Effect
of Human Lactoferrin on Toll-like Receptors 2 Expression as Therapeutic
Approach for Keratoconus. International Journal of Molecular Sciences
2022;23:12350.
52 Rabinowitz YS, Rasheed K. KISA%
index: a quantitative videokeratography
algorithm embodying minimal
topographic criteria for diagnosing keratoconus.
J Cataract Refract Surg 1999;25:1327-35.
53 Randleman JB, Woodward M, Lynn MJ,
Stulting RD. Risk assessment for ectasia
after corneal refractive surgery.
Ophthalmology 2008;115:37-50.
54 Randleman JB, Trattler WB, Stulting
RD. Validation of the Ectasia Risk Score
System for preoperative laser in situ
keratomileusis screening. American
journal of ophthalmology
2008;145:813-8.
55 Reinstein DZ, Archer TJ, Gobbe M.
Stability of LASIK in topographically
suspect keratoconus confirmed
non-keratoconic by Artemis VHF digital
ultrasound epithelial thickness
mapping: 1-year follow-up. J Refract Surg
2009;25:569-77.
56 Klein SR, Epstein RJ, Randleman JB,
Stulting RD. Corneal ectasia after laser
in situ keratomileusis in patients
without apparent preoperative risk factors.
Cornea 2006;25:388-403.
57 Ambrosio R, Jr., Dawson DG, Salomao
M, Guerra FP, Caiado AL, Belin MW.
Corneal ectasia after LASIK despite
low preoperative risk: tomographic and
biomechanical findings in the
unoperated, stable, fellow eye. Journal of
refractive surgery (Thorofare, NJ :
1995) 2010;26:906-11.
58 Malecaze F, Coullet J, Calvas P,
Fournie P, Arne JL, Brodaty C. Corneal
ectasia after photorefractive
keratectomy for low myopia. Ophthalmology
2006;113:742-6.
59 Ambrosio R, Jr., Nogueira LP,
Caldas DL, et al. Evaluation of corneal shape and
biomechanics before LASIK.
International ophthalmology clinics 2011;51:11-38.
60 Lopes BT, Ramos IC, Dawson DG,
Belin MW, Ambrosio R, Jr. Detection of ec[1]tatic corneal
diseases based on pentacam. Zeitschrift fur medizinische Physik
2016;26:136-42.
61 Ambrosio R, Jr., Valbon BF,
Faria-Correia F, Ramos I, Luz A. Scheimp©ug imaging
for laser refractive surgery. Curr
Opin Ophthalmol 2013;24:310-20.
62 Ambrosio Jr R, Belin M. Enhanced
screening for ectasia risk prior to laser laser
vision correction. . International
Journal of Keratoconus and Ectatic Corneal
Diseases 2017;6:23-33.
63 Lopes BT, Ramos IC, Salomao MQ, et
al. Enhanced Tomographic Assessment
to Detect Corneal Ectasia Based on
Artificial Intelligence. American journal of
ophthalmology 2018;195:223-32.
64 Ambrósio Jr R, Ramos I, Lopes B, et
al. Assessing ectasia susceptibility prior
to LASIK: the role of age and residual
stromal bed (RSB) in conjunction to
Belin-Ambrósio deviation index
(BAD-D). Revista Brasileira de Oftalmologia
2014;73:75-80.
65 Flockerzi E, Hafner L, Xanthopoulou
K, et al. Reliability analysis of successive
Corneal Visualization Scheimpflug
Technology measurements in different
keratoconus stages. Acta Ophthalmol
2022;100:e83-e90.
66 Flockerzi E, Vinciguerra R, Belin
MW, Vinciguerra P, Ambrosio R, Jr., Seitz B.
Correlation of the Corvis
Biomechanical Factor with tomographic parameters
in keratoconus. J Cataract Refract Surg
2022;48:215-21.
67 Flockerzi E, Vinciguerra R, Belin
MW, Vinciguerra P, Ambrosio R, Jr., Seitz
B. Combined biomechanical and
tomographic keratoconus staging: Adding
a biomechanical parameter to the ABCD
keratoconus staging system. Acta
Ophthalmol 2022;100:e1135-e42.
68 Eliasy A, Chen K-J, Vinciguerra R,
et al. Determination of Corneal Biomechanical
Behavior in-vivo for Healthy Eyes
Using CorVis ST Tonometry: Stress-Strain
Index. Frontiers in bioengineering and
biotechnology 2019;7.
69 Vinciguerra R, Ambrosio R, Jr.,
Elsheikh A, et al. Detection of Keratoconus
With a New Biomechanical Index. J
Refract Surg 2016;32:803-10.
70 Lopes BT, Ramos IdC, Salomão MQ,
Canedo ALC, Ambrósio Jr R. Perfil
paquimétrico horizontal para a
detecção do ceratocone. Rev Bras Oftalmol
2015;74:382-5.
71 Flockerzi E, Hafner L, Xanthopoulou
K, et al. Reliability analysis of successive
Corneal Visualization Scheimpflug
Technology measurements in different
keratoconus stages. Acta Ophthalmol
2021.
72 Ambrosio R, Jr., Lopes BT,
Faria-Correia F, et al. Integration of Scheimp©ug-Based
Corneal Tomography and Biomechanical
Assessments for Enhancing Ectasia
Detection. J Refract Surg
2017;33:434-43.
73 Ambrosio R, Jr., Correia FF, Lopes
B, et al. Corneal Biomechanics in Ectatic
Diseases: Refractive Surgery
Implications. Open Ophthalmol J 2017;11:176-93.
74 Kataria P, Padmanabhan P,
Gopalakrishnan A, Padmanaban V, Mahadik S,
Ambrósio Jr R. Accuracy of
Scheimpflug-derived corneal biomechanical and
tomographic indices for detecting
subclinical and mild keratectasia in a South
Asian population. Journal of Cataract
& Refractive Surgery 2019;45:328-36.
75 Sedaghat M-R, Momeni-Moghaddam H,
Ambrósio Jr R, et al. Diagnostic ability
of corneal shape and biomechanical
parameters for detecting frank keratoconus.
Cornea 2018;37:1025-34.
76 Ferreira-Mendes J, Lopes BT,
Faria-Correia F, Salomão MQ, Rodrigues-Barros
S, Ambrósio Jr R. Enhanced ectasia
detection using corneal tomography and
biomechanics. American journal of
ophthalmology 2019;197:7-16.
77 Steinberg J, Siebert M, Katz T, et
al. Tomographic and Biomechanical Scheimp[1]flug Imaging for
Keratoconus Characterization: A Validation of Current Indices.
J Refract Surg 2018;34:840-7.
78 Sedaghat MR, Momeni-Moghaddam H,
Ambrosio R, Jr., et al. Long-term Eval[1]uation
of Corneal Biomechanical Properties After Corneal Cross-linking for
Keratoconus: A 4-Year Longitudinal
Study. J Refract Surg 2018;34:849-56.
79 Valbon BF, Ambrosio Jr R, Glicéria
J, Santos R, Luz A, Alves MR. Unilateral
corneal ectasia after Bilateral LASIK:
the thick flap counts. International
Journal of Keratoconus and Ectatic
Corneal Diseases 2013;2:79.
80 Ambrósio Jr R, Lopes B, Amaral J,
et al. Ceratocone: Quebra de paradigmas e
contradições de uma nova
subespecialidade. Revista Brasileira de Oftalmologia
2019;78:81-5.
81 Augustin VA, Son HS, Baur I, Zhao
L, Auffarth GU, Khoramnia R. Detecting
subclinical keratoconus by
biomechanical analysis in tomographically
regular keratoconus fellow eyes.
European journal of ophthalmology
2021:11206721211063740.
82 Belin M, Duncan J, Ambrósio Jr R,
Gomes J. Keratoconus: the ABCD grading
system. Int J Kerat Ect Cor Dis
2015;4:55-63.
83 Belin M, Meyer J, Duncan J, Gelman
R, Borgstrom M, Ambrosio R. Assessing
progression of keratoconus and
cross-linking efficacy: the Belin ABCD
Progression Display. Int J Kerat Ect
Cor Dis 2017;6:1-10.
84 Flockerzi E, Vinciguerra R, Belin
MW, Vinciguerra P, Ambrósio Jr R, Seitz B.
Correlation of the Corvis
Biomechanical Factor CBiF with tomographic param[1]eters in
keratoconus. Journal of cataract and refractive surgery 2021.
85 Shen Y, Han T, Jhanji V, et al.
Correlation Between Corneal Topographic,
Densitometry, and Biomechanical
Parameters in Keratoconus Eyes. Transla[1]tional
vision science & technology 2019;8:12-.
86 Lopes B, Ramos I, Ambrosio R, Jr.
Corneal densitometry in keratoconus. Cornea 2014;33:1282-6.
Pediatrics and Keratoconus
1 Mukhtar S, Ambati BK. Pediatric
keratoconus: a review of the literature.
Int Ophthalmol. 2018
Oct;38(5):2257-2266. doi: 10.1007/s10792-017-0699-8.
Epub 2017 Aug 29. PMID: 28852910;
PMCID: PMC5856649.
2 Leoni-Mesplie, S., et al.
Scalability and Severity of Keratoconus in Children.
American Journal of Ophthalmology,
July 2012: 154(1)56-62.
3 Gordon MO, Steger-May K,
Szczotka-Flynn L, Riley C, Joslin CE, Weissman BA,
Fink BA, Edrington TB, Olafsson HE,
Zadnik K; Clek Study Group. Baseline
factors predictive of incident
penetrating keratoplasty in keratoconus. Am J
Ophthalmol. 2006 Dec;142(6):923-30.
doi: 10.1016/j.ajo.2006.07.026. Epub
2006 Sep 1. PMID: 17157577.
4 Al-Mahrouqi H, et al. Retinoscopy as
a Screening Tool for Keratoconus. Cornea
April 2019; 38(4):442-445.
5 Zadnik K, et al. CLEK Study Group.
Collaborative longitudinal evaluation of
keratoconus. Between-eye asymmetry in keratoconus. Cornea. 2002; 21:671-679.
6 Bykhovskaya Y, Rabinowitz YS. Update
on the genetics of keratoconus.
Exp Eye Res. 2021 Jan;202:108398. doi:
10.1016/j.exer.2020.108398. Epub
2020 Dec 13. PMID: 33316263.
7 Caporossi A, et al. Age-related
long-term functional results after ribo[1]flavin
UV A corneal cross-linking. J Ophthalmol. 2011;2011:608041. doi.org/10.1155/2011/60804
8 Glaukos Announces Positive Phase 3
Trial Results for iLink Epi-on Investiga[1]tional Therapy
That Met the Primary Efficacy Endpoint
9 Gaster RN, Margines JB, Li X, Canedo
AC, Rabinowitz YS. Results of corneal
crosslinking in adolescents with
progressive keratoconus: prospective study. J Cataract Refract Surg. 2021 Oct
1;47(10):1333-1337. doi: 10.1097/j. jcrs.0000000000000617. PMID: 33769766.
10 Perez-Straziota C, Gaster RN,
Rabinowitz YS. Corneal Cross-Linking for Pediatric Keratcoconus Review. Cornea.
2018 Jun;37(6):802-809. doi: 10.1097/ ICO.0000000000001579. PMID: 29601364;
PMCID: PMC5938128.
11 Akkaya Turhan S, Aydın FO, Toker E.
Clinical Results of Repeated Corneal
Collagen Cross-linking in Progressive
Keratoconus. Cornea. 2020 Jan;39(1):84- 87. doi: 10.1097/ICO.0000000000002128.
PMID: 31490276.
12 Michaud L, Breton L. Contact Lens
Fitting Post-Corneal Cross-linking. Contact Lens Spectrum. 2018
Mar;33:30-34,51.
13 Perez-Straziota C, Gaster RN,
Rabinowitz YS. Corneal Cross-Linking for Pediatric Keratcoconus Review. Cornea.
2018 Jun;37:802-809.
14 Olivo-Payne A, et al. Optimal
management of pediatric keratoconus: challenges and solutions. Clinical
Ophthalmology. 2019;13:1183-1191.
15 Anitha, V. et al. Pediatric
Keratoconus – Current perspectives and clinical challenges. Indian J
Ophthalmology. 2021 Feb; 69(2): 214-225.
16 Huang C, O’Hara M, Mannis MJ.
Primary pediatric keratoplasty: indications and outcomes. Cornea
2009;28(9):1003–8.
17 Asuri MK, Garg P, Gokhle N, Gupta
S. Penetrating keratoplasty in children. Cornea 2000;19(2):140–4.
18 Koppen C, Kreps EO, Anthonissen L,
Van Hoey M, Dhubhghaill SN, Vermeulen L. Scleral lenses reduce the need for
corneal transplants in severe keratoconus. Am J Ophthalmol 2018;185:43–7.
Corneal Crosslinking for Keratoconus
and Corneal Ectasia
Wollensak G, Spoerl E, Seiler T.
Riboflavin/ultraviolet-a-induced collagen cross[1]linking for the
treatment of keratoconus. Am J Ophthalmol 2003;135:620-7.
2 Brooks NO, Greenstein S, Fry K,
Hersh PS. Patient subjective visual function after corneal collagen
crosslinking for keratoconus and corneal ectasia. J Cataract Refract Surg
2012;38:615-9.
3 Greenstein SA, Fry KL, Bhatt J,
Hersh PS. Natural history of corneal haze after
collagen crosslinking for keratoconus
and corneal ectasia: Scheimpflug and
biomicroscopic analysis. J Cataract
Refract Surg 2010;36:2105-14.
4 Greenstein SA, Fry KL, Hersh MJ,
Hersh PS. Higher-order aberrations after
corneal collagen crosslinking for
keratoconus and corneal ectasia. J Cataract
Refract Surg 2012;38:292-302.
5 Greenstein SA, Fry KL, Hersh PS.
Corneal topography indices after corneal
collagen crosslinking for keratoconus
and corneal ectasia: one-year results.
J Cataract Refract Surg
2011;37:1282-90.
6 Greenstein SA, Fry KL, Hersh PS. In
vivo biomechanical changes after corneal
collagen cross-linking for keratoconus
and corneal ectasia: 1-year analysis of a
randomized, controlled, clinical
trial. Cornea 2012;31:21-5.
7 Hersh PS, Greenstein SA, Fry KL.
Corneal collagen crosslinking for keratoconus
and corneal ectasia: One-year results.
J Cataract Refract Surg 2011;37:149-60.
8 Wollensak G, Spoerl E, Seiler T.
Stress-strain measurements of human and
porcine corneas after
riboflavin-ultraviolet-A-induced cross-linking. J Cataract
Refract Surg 2003;29:1780-5.
9 Sawaguchi S, Yue BY, Chang I, Sugar
J, Robin J. Proteoglycan molecules in
keratoconus corneas. Invest Ophthalmol
Vis Sci 1991;32:1846-53.
10 Hersh PS, Stulting RD, Muller D,
Durrie DS, Rajpal RK. U.S. Multicenter Clinical
Trial of Corneal Collagen Crosslinking
for Treatment of Corneal Ectasia after
Refractive Surgery. Ophthalmology
2017;124:1475-84.
11 Hersh PS, Stulting RD, Muller D,
Durrie DS, Rajpal RK. United States Multi[1]center Clinical
Trial of Corneal Collagen Crosslinking for Keratoconus Treatment.
Ophthalmology 2017;124:1259-70.
12 Henriquez MA, Villegas S, Rincon M,
Maldonado C, Izquierdo L, Jr. Long-term
efficacy and safety after corneal
collagen crosslinking in pediatric patients:
Three-year follow-up. Eur J Ophthalmol
2018;28:415-8.
13 Mazzotta C, Traversi C, Baiocchi S,
et al. Corneal Collagen Cross-Linking With
Riboflavin and Ultraviolet A Light for
Pediatric Keratoconus: Ten-Year Results.
Cornea 2018;37:560-6.
14 Raiskup F, Theuring A, Pillunat LE,
Spoerl E. Corneal collagen crosslinking with
riboflavin and ultraviolet-A light in
progressive keratoconus: ten-year results.
J Cataract Refract Surg 2015;41:41-6.
15 Vinciguerra R, Romano V, Arbabi EM,
et al. In Vivo Early Corneal Biomechanical
Changes After Corneal Cross-linking in
Patients With Progressive Keratoconus. J
Refract Surg 2017;33:840-6.
16 Kucumen RB, Sahan B, Yildirim CA,
Ciftci F. Evaluation of Corneal Biomechanical
Changes After Collagen Crosslinking in
Patients with Progressive Keratoconus
by Ocular Response Analyzer. Turk J
Ophthalmol 2018;48:160-5.
17 Scarcelli G, Pineda R, Yun SH.
Brillouin optical microscopy for corneal biomechanics.
Invest Ophthalmol Vis Sci
2012;53:185-90.
18 Seiler T, Hafezi F. Corneal
cross-linking-induced stromal demarcation line.
Cornea 2006;25:1057-9.
19 Greenstein SA, Hersh PS.
Characteristics influencing outcomes of corneal
collagen crosslinking for keratoconus
and ectasia: implications for patient
selection. J Cataract Refract Surg
2013;39:1133-40.
20 Stulting RD, Trattler WB, Woolfson
JM, Rubinfeld RS. Corneal crosslinking
without epithelial removal. J Cataract
Refract Surg 2018;44:1363-70.
21 Hersh PS, Lai MJ, Gelles JD,
Lesniak SP. Transepithelial corneal crosslinking for
keratoconus. J Cataract Refract Surg
2018;44:313-22.
22 Rosenblat E, Hersh PS.
Intraoperative corneal thickness change and clinical
outcomes after corneal collagen
crosslinking. J Cat Refract Surg 2016; 42:
596-605.
23 Alio JL, Shabayek MH, Artola A.
Intracorneal ring segments for keratoconus
correction: long-term follow-up. J
Cataract Refract Surg 2006;32:978-85.
24 Hersh PS, R; Greenstein, S.A.
Corneal Collagen Crosslinking and Intracorneal
Ring Segments for Keratoconus: A
Randomized Study of Concurrent versus
Sequential Treatment. Journal of
Cataract and Refractive Surgery 2019.
25 Sakla H, Altroudi W, Munoz G,
Albarran-Diego C. Simultaneous topography-guided
partial photorefractive keratectomy
and corneal collagen crosslinking for keratoconus. J Cataract Refract Surg
2014;40:1430-8.
Practice Considerations in Managing Keratoconus
and Cross-Linking
REFERENCES:
1.Eisenberg
JS. First Treatment for Keratoconus Itself. Optometry Times, June 1, 2012.
2.Lindstrom RL et al. J Med Econ 2021;24:410. 3. Godefrooij DA, Gans R, Imhof SM, et al. Acta Ophthalmol 2016; 94:675 678
INDICATIONS
Photrexa
Viscous (riboflavin 5’-phosphate in 20% dextran ophthalmic solution) and
Photrexa (riboflavin 5’-phos phate ophthalmic solution) are indicated for use
with the KXL System in corneal collagen cross-linking for the treatment of
progressive keratoconus and corneal ectasia following refractive surgery.
IMPORTANT SAFETY INFORMATION
Corneal
collagen cross-linking should not be performed on pregnant women.
Ulcerative
keratitis can occur. Patients should be monitored for resolution of epithelial
defects. The most common ocular adverse reaction was corneal opacity (haze).
Other ocular side eects include
punctate keratitis, corneal striae, dry eye, corneal epithelium defect, eye
pain, light sensitivity, reduced visual acuity, and blurred vision.
These are not all of the side effects of the
corneal collagen cross-linking treatment. For more information, go to
www.livingwithkeratoconus.com to obtain the FDA-approved product labeling.
You are encouraged to report all side effects to the FDA.
Optometry’s Role in the Patient
Journey
1. Koller T
et al. J Cataract Refract Surg 2009;35:1358. 2. Davidson AE et al. Eye (Lond)
2014;28:189. 3. Tan JCK, et al. Cornea 2019;38:600. 4. Kandel H, et al. Clin
Exp Ophthalmol 2022;Epub ahead of print. 5. Lindstrom RL et al. J Med Econ
2021;24:410. 6. American Academy of Ophthalmology Preferred Practice Pattern,
Corneal Ectasia, 2018
INDICATIONS
Photrexa
Viscous (riboflavin 5’-phosphate in 20% dextran ophthalmic solution) and
Photrexa (riboflavin 5’-phos[1]phate ophthalmic
solution) are indicated for use with the KXL System in corneal collagen
cross-linking for the treatment of progressive keratoconus and corneal ectasia
following refractive surgery.
IMPORTANT SAFETY INFORMATION
Corneal
collagen cross-linking should not be performed on pregnant women.
Ulcerative
keratitis can occur. Patients should be monitored for resolution of epithelial
defects. The most common ocular adverse reaction was corneal opacity (haze).
Other ocular side eects include
punctate keratitis, corneal striae, dry eye, corneal epithelium defect, eye
pain, light sensitivity, reduced visual acuity, and blurred vision.
These are not all of the side effects of the
corneal collagen cross-linking treatment. For more information, go to
www.livingwithkeratoconus.com to obtain the FDA-approved product labeling.
You are
encouraged to report all side effects to the
FDA.
Visit
www.fda.gov/medwatch, or call 1-800-FDA-1088.
Surgical Management of Keratoconus
1 Hersh PS,
Stulting RD, Muller D, Durrie DS, Rajpal RK, United States Cross[1]linking Study G.
United States Multicenter Clinical Trial of Corneal Collagen
Crosslinking
for Keratoconus Treatment. Ophthalmology 2017;124:1259-70.
2 Greenstein
SA, Hersh PS. Corneal Crosslinking for Progressive Keratoconus
and Corneal
Ectasia: Summary of US Multicenter and Subgroup Clinical Trials.
Transl Vis
Sci Technol 2021;10:13.
3
Holmes-Higgin DK, Burris TE. Corneal surface topography and associated
visual
performance with INTACS for myopia: phase III clinical trial results. The
INTACS Study
Group. Ophthalmology 2000;107:2061-71.
4 Rabinowitz
YS. INTACS for keratoconus. Int Ophthalmol Clin 2006;46:91-103.
5 Hersh PS,
Issa R, Greenstein SA. Corneal crosslinking and intracorneal ring
segments for
keratoconus: A randomized study of concurrent versus sequen[1]tial surgery. J
Cataract Refract Surg 2019;45:830-9.
6 Greenstein
SA, Chung D, Rosato L, Gelles JD, Hersh PS. Corneal higher-order
aberrations
after crosslinking and intrastromal corneal ring segments for
keratoconus.
J Cataract Refract Surg 2020;46:979-85.
7 Nguyen N,
Gelles JD, Greenstein SA, Hersh PS. Incidence and associations of
intracorneal
ring segment explantation. J Cataract Refract Surg 2019;45:153-8.
8 Stulting
RD, Fant BS, Group TCS, et al. Results of topography-guided laser in
situ
keratomileusis custom ablation treatment with a refractive excimer laser.
J Cataract
Refract Surg 2016;42:11-8.
9 Cheng SM,
Tu RX, Li X, et al. Topography-Guided Versus Wavefront-Optimized
LASIK for
Myopia With and Without Astigmatism: A Meta-analysis. J Refract
Surg
2021;37:707-14.
10 Nattis A,
Donnenfeld ED, Rosenberg E, Perry HD. Visual and keratometric
outcomes of
keratoconus patients after sequential corneal crosslinking and
topography-guided
surface ablation: Early United States experience. J Cataract
Refract Surg
2018;44:1003-11.
11 Greenstein
SA DI, N, Hersh PS,. Transepithelial Topography Guided PRK for
Keratoconus.
ASCRS 2021, Las Vegas NV.
12
Kanellopoulos AJ. Ten-Year Outcomes of Progressive Keratoconus Manage[1]ment With the Athens
Protocol (Topography-Guided Partial-Refraction PRK
Combined With
CXL). J Refract Surg 2019;35:478-83.
13 Nattis AS,
Rosenberg ED, Donnenfeld ED. One-year visual and astigmatic
outcomes of
keratoconus patients following sequential crosslinking and
topography-guided
surface ablation: the TOPOLINK study. J Cataract Refract
Surg
2020;46:507-16.
14 Eye Bank
Association of America 2019 Data.
15 Shams M,
Sharifi A, Akbari Z, Maghsoudlou A, Reza Tajali M. Penetrating
Keratoplasty
versus Deep Anterior Lamellar Keratoplasty for Keratoconus: A
Systematic
Review and Meta-analysis. J Ophthalmic Vis Res 2022;17:89-107.
16 Anwar M,
Teichmann KD. Deep lamellar keratoplasty: surgical techniques for
anterior
lamellar keratoplasty with and without baring of Descemet’s mem[1]brane. Cornea
2002;21:374-83.
17 Son HS,
Rigi M, Srikumaran D, Eberhart CG, Jun AS, Soiberman US. “Groove
and Peel”
Deep Anterior Lamellar Keratoplasty: How Deep Can You Go? Cornea
2022.
18 Farid M,
Rostov AT. Femtosecond laser deep lamellar keratoplasty. Indian J
Ophthalmol
2022;70:3669-72.
19 Ganesh S,
Brar S. Femtosecond Intrastromal Lenticular Implantation Combined
With
Accelerated Collagen Cross-Linking for the Treatment of Keratoco[1]nus--Initial Clinical
Result in 6 Eyes. Cornea 2015;34:1331-9.
20 Eshraghi H
GS, Gelles J, Hersh P. Cornea Tissue Addition for Keratoconus
(CTAK):
Clinical Trial of Allogenic Corneal Inlays for Keratoconus. ASCRRS
2021, Las
Vegas NV.
21 Rafat M,
Jabbarvand M, Sharma N, et al. Bioengineered corneal tissue for
minimally
invasive vision restoration in advanced keratoconus in two clinical
cohorts. Nat
Biotechnol 2022.
22 Shah Z,
Hussain I, Borroni D, Khan BS, Wahab S, Mahar PS. Bowman’s layer
transplantation
in advanced keratoconus; 18-months outcomes. Int Ophthal[1]mol
2022;42:1161-73.
23 Panda A,
Aggarwal A, Madhavi P, et al. Management of acute corneal hydrops
secondary to
keratoconus with intracameral injection of sulfur hexafluoride
(SF6). Cornea
2007;26:1067-9.
24 Yahia
Cherif H, Gueudry J, Afriat M, et al. Efficacy and safety of pre-Descem[1]et’s membrane sutures
for the management of acute corneal hydrops in
keratoconus.
Br J Ophthalmol 2015;99:773-7.
25 Bachmann
B, Handel A, Siebelmann S, Matthaei M, Cursiefen C. Mini-De[1]scemet Membrane
Endothelial Keratoplasty for the Early Treatment of Acute
Corneal
Hydrops in Keratoconus. Cornea 2019;38:1043-8.
26 Garcia de
Oteyza G, Bregliano G, Sassot I, Quintana L, Rius C, Garcia-Albisua
AM. Primary
surgical options for acute corneal hydrops: A review. Eur J
Ophthalmol
2021:11206721211037833.
27 Fairaq R,
Almutlak M, Almazyad E, Badawi AH, Ahad MA. Outcomes and
complications
of implantable collamer lens for mild to advanced keratoconus.
Int
Ophthalmol 2021;41:2609-18.
28 Moshirfar
M, Ziari M, Ronquillo YC. Cataract surgery considerations in
patients with
prior history of keratoconus and ectasia. Curr Opin Ophthalmol
2022.
29 Ton Y,
Barrett GD, Kleinmann G, Levy A, Assia EI. Toric intraocular lens power
calculation
in cataract patients with keratoconus. J Cataract Refract Surg
2021;47:1389-97
Specialty Contact Lenses for Keratoconus
1 Edrington
TB, Szczotka LB, Barr JT, et al. Rigid contact lens «tting relationships
in
keratoconus. Collaborative Longitudinal Evaluation of Keratoconus (CLEK)
Study Group.
Optom Vis Sci 1999;76:692–9.
2 Koppen C,
Kreps EO, Anthonissen L, et al. Scleral Lenses Reduce the Need for
Corneal
Transplants in Severe Keratoconus. Am J Ophthalmol 2017 Nov 15. pii:
S0002-9394(17)30453-1.
doi: 10.1016/j.ajo.2017.10.022.
3 Rathi VM,
Mandathara PS, Dumpati S. Contact lens in keratoconus. In: Indian Jour[1]nal of Ophthalmology.
Vol 61. Wolters Kluwer -- Medknow Publications; 2013:410–
4 Jupiter DG,
Katz HR. Management of irregular astigmatism with rigid gas
permeable
contact lenses. CLAO J 2000;26:14–7.
5 Shorter E,
Harthan J, Nau CB, Nau A, Barr JT, Hodge DO, Schornack MM.
Scleral
Lenses in the Management of Corneal Irregularity and Ocular Surface Disease.
Eye Contact Lens 2018;44:372–8.
6 Barr JT,
Zadnik K, Wilson BS, Edrington TB, Everett DF, Fink BA, Shovlin JP, Weissman
BA, Siegmund K, Gordon MO. Factors associated with corneal scar[1]ring in the
collaborative longitudinal evaluation of keratoconus (CLEK) study. Cornea
2000;19:501–7.
7 Zadnik K,
Barr JT, Steger-May K, Edrington TB, McMahon TT, Gordon MO. Comparison of flat
and steep rigid contact lens fitting methods in keratoconus. Optom Vis Sci
2005;82:1014–21.
8 Michaud L,
Brazeau D, Corbeil ME, Forcier P, Bernard PJ. Contribution of soft lenses of
various powers to the optics of a piggy-back system on regular cor[1]neas. Contact Lens
Anterior Eye 2013;36:318–23.
9 Schornack
M. Medical indications for scleral lens use in Barnett M, Johns LK. Contemporary
Scleral Lenses: Theory and Application. Bentham Science 2017. Chapter 5
135-141. Volume 4 ISBN: 978-1-68108-567-8.
10 Efron N
and Pearson RM. Centenary celebration of Fick’s Eine Contactbrille. Archives of
ophthalmology. 1988;106(10):1370-7.
11 Pearson
RM. Kalt, keratoconus, and the contact lens. Optom Vis Sci. 1989;66(9):643-6.
12 Levit A,
Benwell M, Evans BJW. Randomised controlled trial of corneal vs. scleral rigid
gas permeable contact lenses for keratoconus and other ectatic corneal disorders.
Cont Lens Anterior Eye. 2020 Jan 7. pii: S1367-0484(19)30268-1. doi: 10.1016/j.clae.2019.12.007.
[Epub ahead of print]
13 McMonnies
CW. The biomechanics of keratoconus and rigid contact lenses. Eye Contact Lens.
2005 Mar;31(2):80-92. doi: 10.1097/01.icl.0000146321.56815.75.
14 Soeters N,
Visser ES, Imhof SM, et al. Scleral lens in©uence on corneal curvature and
pachymetry in keratoconus patients. Cont Lens Anterior Eye. 2015 Aug;38(4):294-7.
15 Severinsky
B, Fadel D, Davelman J, Moulton E. Effect of Scleral Lenses on
Corneal
Topography in Keratoconus: A Case Series of Cross-Linked Versus
Non-Cross-Linked
Eyes. Cornea. 2019 Aug;38(8):986-991.
16
Serramito-Blanco M, Carpena-Torres C, Carballo J, et al. Anterior Corneal Cur[1]vature and Aberration
Changes After Scleral Lens Wear in Keratoconus Patients
With and
Without Ring Segments Eye Contact Lens. 2019 Mar;45(2):141-148.
17 Tyagi G,
Collins M, Read S, et al. Regional changes in corneal thickness and
shape with
soft contact lenses. Optom Vis Sci. 2010 Aug;87(8):567-75. doi:
10.1097/OPX.0b013e3181e61b78.
18 Hastings
GD, Applegate RA, Nguyen LC, et al. Comparison of wavefront-guided
and best
conventional scleral lenses after habituation in eyes with corneal
ectasia.
Optom Vis Sci. 2019; 96: 238–47.
19 Sabesan R,
Johns L, Tomashevskaya O, et al. Wavefront-guided scleral lens
prosthetic
device for keratoconus. Optom Vis Sci 2013; 90: 314–23.
20 Gelles JD,
Hillier KE, Krisa S, Greenstein SA, Hersh PS. Lipid Keratopathy
Management
With Therapeutic Scleral Lens Wear. Eye Contact Lens. 2022 Feb
1;48(2):91-94.
doi: 10.1097/ICL.0000000000000866. PMID: 35058420.
21 Chen M,
Yoon G. Posterior corneal aberrations and their compensation effects
on anterior
corneal aberrations in keratoconic eyes. Invest Ophthalmol Vis Sci.
2008; 49:
5645-52.
22 Cressey A,
Jacobs DS, Carrasquillo KG. Management of vascularized limbal
keratitis
with prosthetic replacement of the ocular surface system. Eye Contact
Lens.
2012;38:137-140.
23 Koh S,
Inoue R, Maeda N, et al. Corneal tomographic changes during corneal rigid
gas-permeable
contact lens wear in keratoconic eyes. Br J Ophthalmol. 2022
Feb;106(2):197-202.
doi: 10.1136/bjophthalmol-2020-317057. Epub 2020 Nov 10.
24 Walker MK,
Bergmanson JP, Miller WL, et al. Complications and «tting challenges
associated
with scleral contact lenses: A review. Cont Lens Anterior Eye.
2016
Apr;39(2):88-96. doi: 10.1016/j.clae.2015.08.003. Epub 2015 Sep 2. PMID: 26341076
25
Romero-Jiménez M, Santodomingo-Rubido J, Wolffsohn JS. Keratoconus: a review.
Cont Lens Anterior Eye. 2010;33(4):157-166; quiz 205. doi:10.1016/j.clae.2010.04.006
26 Sharma N,
Rao K, Maharana PK, Vajpayee RB. Ocular allergy and keratoconus. Indian J
Ophthalmol. 2013;61(8):407-409. doi:10.4103/0301-4738.116063
27 Bawazeer
AM, Hodge WG, Lorimer B. Atopy and keratoconus: a multivariate analysis. Br J
Ophthalmol. 2000;84(8):834-836. doi:10.1136/bjo.84.8.834
28 Douglas
JP, Lowder CY, Lazorik R, et al. Giant papillary conjunctivitis associated with
rigid gas permeable contact lenses. CLAO J. 1988 Jul-Sep;14(3):143-7. PMID: 3208429
29 Jupiter D,
Karesh J. Ptosis associated with PMMA/rigid gas permeable contact lens wear.
CLAO J. 1999 Jul;25(3):159-62. PMID: 10444052
30 Kobashi H,
Rong SS. Corneal Collagen Cross-Linking for Keratoconus: Systematic Review.
Biomed Res Int. 2017;2017:8145651. doi: 10.1155/2017/8145651. Epub 2017 Jun 11.
31 Kim BZ,
Jordan CA, McGhee CN, Patel DV. Natural history of corneal haze after corneal
collagen crosslinking in keratoconus using Scheimpflug analysis. J Cataract
Refract Surg. 2016 Jul;42(7):1053-9. doi: 10.1016/j.jcrs.2016.04.019. PMID:
27492105.
32 Greenstein
SA, Fry KL, Bhatt J, Hersh PS. Natural history of corneal haze after collagen
crosslinking for keratoconus and corneal ectasia: Scheimpflug and biomicroscopic
analysis. J Cataract Refract Surg. 2010 Dec;36(12):2105-14. doi: 10.1016/j.jcrs.2010.06.067.
PMID: 21111314.
33 Koller T,
Pajic B, Vinciguerra P, Seiler T. Flattening of the cornea after collagen crosslinking
for keratoconus. J Cataract Refract Surg. 2011 Aug;37(8):1488-92. doi:
10.1016/j.jcrs.2011.03.041. PMID: 21782091.
34 Hersh PS,
Stulting RD, Muller D, Durrie DS, Rajpal RK; United States Crosslink[1]ing Study Group.
United States Multicenter Clinical Trial of Corneal Collagen Crosslinking for
Keratoconus Treatment. Ophthalmology. 2017 Sep;124(9):1259-1270. doi:
10.1016/j.ophtha.2017.03.052. Epub 2017 May 7. Erratum in: Ophthal[1]mology. 2017
Dec;124(12 ):1878. PMID: 28495149.
35 Mandathara
PS, Kalaiselvan P, Rathi VM, Murthy SI, Taneja M, Sangwan VS. Contact lens
fitting after corneal collagen cross-linking. Oman J Ophthalmol.
2019 Oct
11;12(3):177-180. doi: 10.4103/ojo.OJO_43_2018. eCollection 2019 Sep-Dec. PMID:
31902993
36 Visser ES,
Soeters N, Tahzib NG. Scleral lens tolerance after corneal cross-link[1]ing for keratoconus.
Optom Vis Sci. 2015 Mar;92(3):318-23. doi: 10.1097/OPX.0000000000000515. PMID:
25599340.
37 Nepomuceno
RL, Boxer Wachler BS, Weissman BA. Feasibility of contact lens fitting on
keratoconus patients with INTACS inserts. Cont Lens Anterior
Eye. 2003
Dec;26(4):175-80. doi: 10.1016/S1367-0484(03)00049-3. PMID: 16303515.
38
Bautista-Llamas MJ, Sánchez-González MC, López-Izquierdo I, López-Muñoz
A,
Gargallo-MartÃnez B, De-Hita-Cantalejo C, Sánchez-González JM. Complica[1]tions and
Explantation Reasons in Intracorneal Ring Segments (ICRS) Implan[1]tation: A Systematic
Review. J Refract Surg. 2019 Nov 1;35(11):740-747. doi: 10.3928/1081597X-20191010-02.
PMID: 31710377.
39 Nguyen N,
Gelles JD, Greenstein SA, Hersh PS. Incidence and associations
of
intracorneal ring segment explantation. J Cataract Refract Surg. 2019
Feb;45(2):153-158.
doi: 10.1016/j.jcrs.2018.09.021. Epub 2018 Nov 30. PMID: 30509748.
40
Kanellopoulos AJ, Vingopoulos F, Sideri AM. Long-Term Stability With the Ath[1]ens Protocol
(Topography-Guided Partial PRK Combined With Cross-Linking)
in Pediatric
Patients With Keratoconus. Cornea. 2019 Aug;38(8):1049-1057.
doi:
10.1097/ICO.0000000000001996. PMID: 31169612.
41
Kanellopoulos AJ. Ten-Year Outcomes of Progressive Keratoconus Management
With the
Athens Protocol (Topography-Guided Partial-Refraction PRK Combined
With CXL). J
Refract Surg. 2019 Aug 1;35(8):478-483. doi: 10.3928/1081597X[1]20190627-01. PMID:
31393985.
42 Wietharn
BE, Driebe WT Jr. Fitting contact lenses for visual rehabilitation
after
penetrating keratoplasty. Eye Contact Lens. 2004 Jan;30(1):31-3. doi:
10.1097/01.ICL.0000101488.84455.E6.
PMID: 14722466.
43 Schear MJ,
Ibrahim K, Winokur J, Busuioc C, Udell I, Steiner A. Treatment Lim[1]itations With PROSE
(Prosthetic Replacement of the Ocular Surface Ecosystem):
One Centers
Experience. Eye Contact Lens. 2019 Sep;45(5):315-317. doi: 10.1097/
ICL.0000000000000610.
PMID: 31033605.
44 Kumar M,
Shetty R, Khamar P, Vincent SJ. Scleral Lens-Induced Corneal Edema
after
Penetrating Keratoplasty. Optom Vis Sci. 2020 Sep;97(9):697-702. doi:
10.1097/OPX.0000000000001571.
PMID: 32932397.
45 Nguyen LT,
Yang D, Vien L. Case Series: Corneal Epithelial Macrocysts in
Scleral
Contact Lenses Post-penetrating Keratoplasty. Optom Vis Sci. 2018
Jul;95(7):616-620.
doi: 10.1097/OPX.0000000000001245. PMID: 29957737
Collaborative Care in Keratoconus
1 Hashemi H,
Heydarian S, Hooshmand E, et al.
The Prevalence
and Risk Factors for Kerato[1]conus: A Systematic
Review and Meta-Analy[1]sis. Cornea.
2020;39(2):263‐270
2 Chan, E.,
Chong, E., Lingham, G., Stevenson,
L.,
Sanfillippo, P., Hewitt, A., & Yazar, S. (2020,
August 21).
Prevalence of keratoconus based on
Scheimphlug
imaging: The RAINE study. Oph[1]thalmology.
3 Eisenberg,
J. (2012, May 31). First treatment for keratoconus itself. Optometry Times
Clinical Pearls for Communicating with
Keratoconic Patients
1 McMahon J.
Patient centred care in keratoconus. Optician. Vol.2016 Issue 4, April 2016.
2 Amiri F,
Ghiyasvandian S, Navab E, Zakerimoghadam M. Corneal transplantation: A new view
of life. Electron Physician. 2017 Apr 25;9(4):4055-4063.
3 Subasinghe
SK, Ogbuehi KC, Dias GJ. Current perspectives on corneal collagen crosslinking
(CXL). Graefes Arch Clin Exp Ophthalmol. 2018 Aug;256(8):1363-1384.
4 Najmi H,
Mobarki Y, Mania K, Altowairqi B, Basehi M, Mahfouz MS, Elmahdy M. The
correlation between keratoconus and eye rubbing: a review. Int J Ophthal[1]mol. 2019 Nov
18;12(11):1775-1781.
5 Lim L, Lim
EWL. Current perspectives in the management of keratoconus with contact lenses.
Eye (Lond). 2020 Dec;34(12):2175-2196.
6
Castro-Luna, G., & Pérez-Rueda, A. (2020). A predictive model for early
diagno[1]sis of keratoconus.
BMC ophthalmology, 20(1), 263.
7
Gordon-Shaag, A., Millodot, M., Shneor, E., & Liu, Y. (2015). The genetic
and environmental factors for keratoconus. BioMed research international, 2015,
795738.
8 Mannis MJ,
Ling JJ, Kyrillos R, Barnett M. Keratoconus and Personality-A Review. Cornea.
2018 Mar;37(3):400-404. doi: 10.1097/ICO.0000000000001479. PMID: 29215397.
9 Mannis MJ, Morrison TL, Zadnik K, et al. Personality trends in keratoconus. An analysis. Arch Ophthalmol. 1987 Jun;105(6):798-800.
10 Yildiz M, Turhan SA, Yargı B, et al. Psychiatric morbidity of patients with keratoconus: A cross-sectional study. J Psychosom Res. 2021 Apr;143:110384.doi: 10.1016/j.jpsychores.2021.110384. Epub 2021 Feb 3. PMID: 33611072.
11 Lim, L.,
& Lim, E. (2020). Current perspectives in the management of keratoconus with
contact lenses. Eye (London, England), 34(12), 2175–2196.
12 Vastardis I, Sagri D, Fili S, et al. Current Trends in Modern Visual Intraocular Lens Enhancement Surgery in Stable Keratoconus: A Synopsis of Do’s, Don’tsand Pitfalls. Ophthalmol Ther. 2019 Oct;8(Suppl 1):33-47. doi: 10.1007/s40123-019-00212-1. Epub 2019 Oct 11. PMID: 31605318; PMCID: PMC6789053.
13 Yahalomi,
T., Achiron, A., Hecht, I., et al. Refractive Outcomes of Non-Toric and Toric
Intraocular Lenses in Mild, Moderate and Advanced Keratoconus: A Systematic
Review and Meta-Analysis. J Clin Med. 2022 Apr 27;11(9):2456. doi: 10.3390/jcm11092456.
PMID: 35566583; PMCID: PMC9101494.